Steinitz theorem
From Commalg
Statement
Suppose is a field and
is a field containing
. Then, there exists a subset
of
, such that:
-
is an algebraically independent subset of
; in other words the field of fractions
embeds inside
-
is algebraic over
Since the extension is purely transcendental and the extension
is algebraic, Steinitz theorem can be reformulated as: every field extension can be expressed as an algebraic extension of a purely transcendental extension
Related facts
It is important to note that the order of purely transcendental and algebraic matters: not every field extension can be expressed as a purely transcendental extension of an algebraic extension. In fact, there are examples of extensions where the base field is relatively algebraically closed in the extension, but the extension is not purely transcendental.