Normal domain
This article defines a property of integral domains, viz., a property that, given any integral domain, is either true or false for that.
View other properties of integral domains | View all properties of commutative unital rings
VIEW RELATED: Commutative unital ring property implications | Commutative unital ring property non-implications |Commutative unital ring metaproperty satisfactions | Commutative unital ring metaproperty dissatisfactions | Commutative unital ring property satisfactions | Commutative unital ring property dissatisfactions
Definition
Symbol-free definition
An integral domain is said to be normal if it is integrally closed in its field of fractions.
Relation with other properties
Stronger properties
- Unique factorization domain
- Principal ideal domain
- [Euclidean domain]]
- Dedekind domain