Krull dimension

From Commalg

Template:Curing-dimension notion

Definition

Symbol-free definition

The Krull dimension of a commutative unital ring is the supremum of lengths of descending chains of distinct prime ideals.

Definition with symbols

Let be a commutative unital ring. The Krull dimension of , denoted is the supremum over all for which there exist strictly descending chains of prime ideals:

Related ring properties

Facts

The polynomial ring over any Noetherian ring of finite dimension, has dimension one more than the original ring. Thus, we see that the polynomial ring in variables over a field, has dimension , while the polynomial ring in variables over a principal ideal domain (or Dedekind domain) which is not a field, has dimension