Localization respects associated primes for Noetherian rings

From Commalg
Revision as of 16:52, 27 February 2008 by Vipul (talk | contribs)

This article defines a result where the base ring (or one or more of the rings involved) is Noetherian
View more results involving Noetherianness or Read a survey article on applying Noetherianness

Statement

Suppose A is a Noetherian commutative unital ring and M is any A-module (not necessarily finitely generated. Let S be a multiplicatively closed subset of A.

There is a natural inclusion on spectra:

Spec(S1A)Spec(A)

The set of associated primes for S1M as an S1A-module is the inverse image in Spec(S1A) of the set of associated primes for M as an A-module.

If we identify Spec(S1A) with its image, a subset of Spec(A), then we can write:

AssS1AS1M=AssAMSpec(S1A)