Property of commutative unital rings

From Commalg
Revision as of 00:03, 3 February 2008 by Vipul (talk | contribs) (New page: ==Definition== A '''property of commutative unital rings''' is a map from the collection of all commutative unital rings to the two-element set '''(True, False)''' that is isomorphism-inv...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definition

A property of commutative unital rings is a map from the collection of all commutative unital rings to the two-element set (True, False) that is isomorphism-invariant: in other words, if two commutative unital rings are isomorphic, then either they both get mapped to True or they both get mapped to False.

The commutative unital rings that get mapped to True are said to have the property and those that get mapped to False are said to not have the property.