Noether normalization theorem: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Statement== | ==Statement== | ||
Let <math>k</math> be a [[field]] and <math>R</math> a finitely generated <math>k</math>-algebra. Let <math>P_r \ge P_{r-1} \ge \ldots \ge P_0</math> be a chain of descending | Let <math>k</math> be a [[field]] and <math>R</math> a finitely generated <math>k</math>-algebra. Let <math>P_r \ge P_{r-1} \ge \ldots \ge P_0</math> be a chain of descending [[prime ideal]]s, maximal in the sense that no further prime ideals can be inserted in the chain. Then there exists a subring <math>S</math> of <math>R</math> with <math>S \cong k[x_1, x_2, \ldots, x_r]</math> sich that <math>R</math> is a finitely generated <math>S</math>-module and <math>P_i \cap S = (x_1, x_2, \ldots, x_i)</math>. | ||
==Applications== | ==Applications== | ||
* [[Hilbert's nullstellensatz]] | * [[Hilbert's nullstellensatz]] |
Revision as of 19:22, 2 February 2008
Statement
Let be a field and a finitely generated -algebra. Let be a chain of descending prime ideals, maximal in the sense that no further prime ideals can be inserted in the chain. Then there exists a subring of with sich that is a finitely generated -module and .