Localization respects associated primes for Noetherian rings: Difference between revisions

From Commalg
No edit summary
No edit summary
Line 1: Line 1:
{{Noetherian base result}}
{{Noetherian ring result}}
 
==Statement==
==Statement==


Line 13: Line 14:


<math>Ass_{S^{-1}A}S^{-1}M = Ass_AM \cap Spec(S^{-1}A)</math>
<math>Ass_{S^{-1}A}S^{-1}M = Ass_AM \cap Spec(S^{-1}A)</math>
==Proof==
The key ingredient in the proof is the fact that if <math>m \in M</math>, the union of annihilators of all elements of <math>Sm</math>, can be realized as the annihilator of a ''single'' element <math>sm</math>.

Revision as of 17:17, 27 February 2008

This article defines a result where the base ring (or one or more of the rings involved) is Noetherian
View more results involving Noetherianness or Read a survey article on applying Noetherianness

Statement

Suppose is a Noetherian commutative unital ring and is any -module (not necessarily finitely generated. Let be a multiplicatively closed subset of .

There is a natural inclusion on spectra:

The set of associated primes for as an -module is the inverse image in of the set of associated primes for as an -module.

If we identify with its image, a subset of , then we can write:

Proof

The key ingredient in the proof is the fact that if , the union of annihilators of all elements of , can be realized as the annihilator of a single element .