Noether normalization theorem: Difference between revisions

From Commalg
No edit summary
 
No edit summary
Line 1: Line 1:
==Statement==
==Statement==


Let <math>k</math> be a [[field]] and <math>R</math> a finitely generaetd <math>k</math>-algebra. Let <math>P_r \ge P_{r-1} \ge \ldots \ge P_0</math> be a chain of descending ]]prime ideal]]s, maximal in the sense that no further prime ideals can be inserted in the chain. Then there exists a subring <math>S</math> of <math>R</math> with <math>S \cong k[x_1, x_2, \ldots, x_r]</math> sich that <math>R</math> is a finitely generated <math>S</math>-module and <math>P_i \cap S = (x_1, x_2, \ldots, x_i)</math>.
Let <math>k</math> be a [[field]] and <math>R</math> a finitely generated <math>k</math>-algebra. Let <math>P_r \ge P_{r-1} \ge \ldots \ge P_0</math> be a chain of descending ]]prime ideal]]s, maximal in the sense that no further prime ideals can be inserted in the chain. Then there exists a subring <math>S</math> of <math>R</math> with <math>S \cong k[x_1, x_2, \ldots, x_r]</math> sich that <math>R</math> is a finitely generated <math>S</math>-module and <math>P_i \cap S = (x_1, x_2, \ldots, x_i)</math>.


==Applications==
==Applications==


* [[Hilbert's nullstellensatz]]
* [[Hilbert's nullstellensatz]]

Revision as of 00:05, 8 January 2008

Statement

Let k be a field and R a finitely generated k-algebra. Let PrPr1P0 be a chain of descending ]]prime ideal]]s, maximal in the sense that no further prime ideals can be inserted in the chain. Then there exists a subring S of R with Sk[x1,x2,,xr] sich that R is a finitely generated S-module and PiS=(x1,x2,,xi).

Applications