Nakayama's lemma: Difference between revisions
| Line 6: | Line 6: | ||
# If <math>IM = M</math> then <math>M = 0</math> | # If <math>IM = M</math> then <math>M = 0</math> | ||
# If <math>N</math> is a submodule of <math>M</math> | # If <math>N</math> is a submodule of <math>M</math> such that <math>N + IM = M</math>, then <math>N = M</math> | ||
# If <math>m_1, m_2, \ldots, m_n</math> have images in <math>M/IM</math> that generate it as a <math>R</math>-module, then <math>m_1, m_2, \ldots, m_n</math> generate <math>M</math> as a <math>R</math>-module | # If <math>m_1, m_2, \ldots, m_n</math> have images in <math>M/IM</math> that generate it as a <math>R</math>-module, then <math>m_1, m_2, \ldots, m_n</math> generate <math>M</math> as a <math>R</math>-module | ||
Revision as of 17:44, 3 March 2008
This article is about the statement of a simple but indispensable lemma in commutative algebra
View other indispensable lemmata
Statement
Let be a commutative unital ring, and be an ideal contained inside the Jacobson radical of . Let be a finitely generated -module. Then the following are true:
- If then
- If is a submodule of such that , then
- If have images in that generate it as a -module, then generate as a -module
Related facts
The graded Nakayama's lemma is a related fact true for graded rings.