Nakayama's lemma: Difference between revisions

From Commalg
No edit summary
Line 5: Line 5:
Let <math>R</math> be a [[commutative unital ring]], and <math>I</math> be an [[ideal]] contained inside the [[Jacobson radical]] of <math>R</math>. Let <math>M</math> be a finitely generated <math>R</math>-module. Then the following are true:
Let <math>R</math> be a [[commutative unital ring]], and <math>I</math> be an [[ideal]] contained inside the [[Jacobson radical]] of <math>R</math>. Let <math>M</math> be a finitely generated <math>R</math>-module. Then the following are true:


* If <math>IM = M</math> then <math>M = 0</math>
# If <math>IM = M</math> then <math>M = 0</math>
* If <math>m_1, m_2, \ldots, m_n</math> have images in <math>M/IM</math> that generate it as a <math>R</math>-module, then <math>m_1, m_2, \ldots, m_n</math> generate <math>M</math> as a <math>R</math>-module
# If <math>N</math> is a submodule of <math>M</math> suc hthat <math>N + IM = M</math>, then <math>N = M</math>
# If <math>m_1, m_2, \ldots, m_n</math> have images in <math>M/IM</math> that generate it as a <math>R</math>-module, then <math>m_1, m_2, \ldots, m_n</math> generate <math>M</math> as a <math>R</math>-module
 
==Related facts==
 
The [[graded Nakayama's lemma]] is a related fact true for [[graded ring]]s.

Revision as of 17:44, 3 March 2008

This article is about the statement of a simple but indispensable lemma in commutative algebra
View other indispensable lemmata

Statement

Let R be a commutative unital ring, and I be an ideal contained inside the Jacobson radical of R. Let M be a finitely generated R-module. Then the following are true:

  1. If IM=M then M=0
  2. If N is a submodule of M suc hthat N+IM=M, then N=M
  3. If m1,m2,,mn have images in M/IM that generate it as a R-module, then m1,m2,,mn generate M as a R-module

Related facts

The graded Nakayama's lemma is a related fact true for graded rings.