Integral domain: Difference between revisions
No edit summary |
|||
Line 32: | Line 32: | ||
* [[Reduced ring]] | * [[Reduced ring]] | ||
Revision as of 09:15, 7 August 2007
This article defines a property of commutative rings
Definition
Symbol-free definition
A commutative unital ring is termed an integral domain if it satisfies the following equivalent conditions:
- It is cancellative
- The zero ideal is a prime ideal
- The product of nonzero elements in nonzero
Definition with symbols
A commutative unital ring is termed an integral domain if satisfies the following equivalent conditions:
- Whenever and is not zero,
- The ideal is a prime ideal
- Whenever , either or
Relation with other properties
Stronger properties
Particular kinds of integral domains
Refer Category: Properties of integral domains