Cohen structure theorem: Difference between revisions

From Commalg
No edit summary
 
m (2 revisions)
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
===Symbolic statement===
===Symbolic statement===


Let <math>R</math> be a [[complete local ring|complete local]] [[Noetherian ring]] with [[residue field]] <math>K</math>. If <math>R</math> contains a field, then <math>R = K[[x_1, x_2, \ldost, x_n]]/I</math> for some <math>n</math> and some <math>I</math>.
Let <math>R</math> be a [[complete local ring|complete local]] [[Noetherian ring]] with [[residue field]] <math>K</math>. If <math>R</math> contains a field, then <math>R = K[[x_1, x_2, \ldots, x_n]]/I</math> for some <math>n</math> and some <math>I</math>

Latest revision as of 16:19, 12 May 2008

Statement

Verbal statement

Any complete local equicharacteristic Noetherian ring is a quotient of a power series ring over its residue field.

Symbolic statement

Let R be a complete local Noetherian ring with residue field K. If R contains a field, then R=K[[x1,x2,,xn]]/I for some n and some I